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Abstract

Any network studied in the literature is inevitably just a sampled representative of its
real-world analogue. Additionally, network sampling is lately often applied to large net-
works to allow for their faster and more efficient analysis. Nevertheless, the changes in
network structure introduced by sampling are still far from understood. In this paper,
we study the presence of characteristic groups of nodes in sampled social and infor-
mation networks. We consider different network sampling techniques including random
node and link selection, network exploration and expansion. We first observe that the
structure of social networks reveals densely linked groups like communities, while the
structure of information networks is better described by modules of structurally equiva-
lent nodes. However, despite these notable differences, the structure of sampled networks
exhibits stronger characterization by community-like groups than the original networks,
irrespective of their type and consistently across various sampling techniques. Hence,
rich community structure commonly observed in social and information networks is to
some extent merely an artifact of sampling.

Keywords: complex networks, network sampling, node group structure, communities,
modules
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1. Introduction

Any network found in the literature is inevitably just a sampled representative of
its real-world analogue under study. For instance, many networks change quickly over
time and in most cases merely incomplete data is available on the underlying system.
Additionally, network sampling techniques are lately often applied to large networks
to allow for their faster and more efficient analysis. Since the findings of the analyses
and simulations on such sampled networks are implied for the original ones, it is of key
importance to understand the structural differences between the original networks and
their sampled variants.
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A large number of studies on network sampling focused on the changes in network
properties introduced by sampling. Lee et al. [1] showed that random node and link
selection overestimate the scale-free exponent [2] of the degree and betweenness cen-
trality [3] distributions, while they preserve the degree mixing [4]. On the other hand,
random node selection preserves the degree distribution of different random graphs [5]
and performs better for larger sampled networks [6]. Furthermore, Leskovec et al. [7]
showed that the exploration sampling using random walks or forest-fire strategy [8] out-
performs the random selection techniques in preserving the clustering coefficient [9],
different spectral properties [7], and the in-degree and out-degree distributions. More re-
cently, Ahmed et al. [10] proposed random link selection with additional induction step,
which notably improves on the current state-of-the-art. Their results confirm that the
proposed technique well captures the degree distributions, shortest paths [9] and also the
clustering coefficient of the original networks. Lately, different studies also focus on find-
ing and correcting biases in sampling process, for example observing the changes of user
attributes under the sampling of social networks [11], analyzing the bias of traceroute
sampling [12] and understanding the changes of degree distribution and hubs inclusion
under various sampling techniques [13]. However, despite all those efforts, the changes
in network structure introduced by sampling and the effects of network structure on the
performance of sampling are still far from understood.

Real-world networks commonly reveal communities (also link-density community [14]),
described as densely connected clusters of nodes that are loosely connected between [15].
Communities possibly play important roles in different real-world systems, for example in
social networks communities present friendship circles or people with similar interest [16],
while in citation networks communities can help us to reveal relationships between scien-
tific disciplines [17]. Furthermore, community structure has a strong impact on dynamic
processes taking place on networks [18] and thus provides an important insight into struc-
tural organization and functional behavior of real-world systems. Consequently, a number
of community detection algorithms have been proposed over the last years [19, 20, 21, 22]
(for a review see [23]). Most of these studies focus on classical communities characterized
by higher density of edges [24]. However, some recent works demonstrate that real-world
networks reveal also other characteristic groups of nodes [25, 26] like groups of struc-
turally equivalent nodes denoted modules [25, 27] (also link-pattern community [14] and
other [28]), or different mixtures of communities and modules [29].

Despite community structure appears to be an intrinsic property of many real-world
networks, only a few studies considered the effects between the community structure and
network sampling. Salehi et al. [30] proposed Page-Rank sampling, which improves the
performance of sampling of networks with strong community structure. Furthermore,
expansion sampling [31] directly constructs a sample representative of the community
structure, while it can also be used to infer communities of the unsampled nodes. Other
studies, for example analyzed the evolution of community structure in collaboration net-
works and showed that the number of communities and their size increase over time [32],
while the network sampling has a potential application in testing for signs of preferential
attachment in the growth of networks [33]. However, to the best of our knowledge, the
question whether sampling destroys the structure of communities and other groups of
nodes or are sampled nodes organized in a similar way than nodes in original network
remains unanswered.

In this paper, we study the presence of characteristic groups of nodes in different
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(a) RND (b) RLS (c) RLI

Figure 1: Random selection techniques applied to a small toy network, where the samples are shown
with highlighted nodes and links. (a) In random node selection by degree, the nodes are selected with
probability proportional to their degrees, while their mutual links are included in the sample. (b) In
random link selection, the sample consists of links selected uniformly at random. (c) In random link
selection with induction, the sample consists of randomly selected links (solid lines) and the links between
their endpoints (dashed lines).

social and information networks and analyze the changes in network group structure
introduced by sampling. We consider six sampling techniques including random node and
link selection, network exploration and expansion sampling. The results first reveal that
nodes in social networks form densely linked community-like groups, while the structure
of information networks is better described by modules. However, regardless of the
type of the network and consistently across different sampling techniques, the structure
of sampled networks exhibits much stronger characterization by community-like groups
than the original networks. We therefore conclude that the rich community structure is
not necessary a result of common belief like for example homophily in social networks.

The rest of the paper is structured as follows. In Section 2, we introduce different
sampling techniques considered in the study, while the adopted node group extraction
framework is presented in Section 3. The results of the empirical analysis are reported
and formally discussed in Section 4, while Section 5 summarizes the paper and gives
some prominent directions for future research.

2. Network sampling

Network sampling techniques can be roughly divided into two categories: random
selection and network exploration techniques. In the first category, nodes or links are
included in the sample uniformly at random or proportional to some particular charac-
teristic like the degree of a node or its PageRank score [34]. In the second category, the
sample is constructed by retrieving a neighborhood of a randomly selected seed node
using random walks, breadth-first search or another strategy. For the purpose of this
study, we consider three techniques from each of the categories.

2.1. Random selection

From the random selection category, we first adopt random node selection by de-
gree [7] (RND). Here, the nodes are selected randomly with probability proportional to
their degrees, while all their mutual links are included in the sample (Fig. 1(a)). Note
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(a) BFS (b) FFS (c) EXS

Figure 2: Network exploration techniques applied to a small toy network, where the samples are shown
with highlighted nodes and links. (a) In breadth-first sampling, a seed node is first selected uniformly
at random, while its broad neighborhood retrieved from breadth-first search is included in the sample.
(b) In forest-fire sampling, the broad neighborhood of a randomly selected seed node is retrieved from
partial breadth-first search, where only a fraction of neighbors is included in the sample. (c) In expansion
sampling, the seed node is selected uniformly at random, while the remaining nodes are selected from
the neighborhood of sampled nodes with probability proportional to their contribution to the expansion
factor (see text).

that RND improves the performance of the basic random node selection [7, 35], where
the nodes are selected to the sample uniformly at random. RND fits better spectral
network properties [7] and produces the sample with larger weakly connected compo-
nent [35]. Moreover, it shows good performance in preserving the clustering coefficient
and betweenness centrality distribution of the original networks [35]. Nevertheless, it can
still construct a disconnected sample network, despite a fully connected original network.

Next, we adopt random link selection [7] (RLS), where the sample consists of links
selected uniformly at random (Fig. 1(b)). RLS overestimates degree and betweenness
centrality exponent, underestimate the clustering coefficient and accurately matches the
assortativity of the original network [1]. The samples created with RLS are sparse and
the connectivity of the original network is not preserved, still RLS is likely to capture
the path length of the original network [36].

Last, we adopt random link selection with induction [10] (RLI), which improves the
performance of RLS. In RLI, the sample consists of randomly selected links as before,
while also all additional links between their endpoints (Fig. 1(c)). RLI outperforms
several other methods in capturing the degree, path length and clustering coefficient
distribution. It selects nodes with higher degree than RLS, thus the connectivity of the
sample is increased [10].

2.2. Network exploration

From the network exploration category, we first adopt breadth-first sampling [1]
(BFS). Here, a seed node is selected uniformly at random, while its broad neighbor-
hood retrieved from the basic breadth-first search is included in the sample (Fig. 2(a)).
The sample network is thus a connected subgraph of the original network. BFS is bi-
ased towards selecting high-degree nodes in the sample [37]. It captures well the degree
distribution of the networks, while it performs worst in inclusion of hubs in the sample
quickly in the sampling process [13]. BFS imitates the snowball sampling approach for
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collecting social data used especially when the data is difficult to reach [38]. Selected
seed participant is asked to report his friends, which are than invited to report their
friends. The procedure is repeated until the desired number of people is sampled.

Next, we adopt a modification of BFS denoted forest-fire sampling [7] (FFS). In
FFS, the broad neighborhood of a randomly selected seed node is retrieved from partial
breadth-first search, where only some neighbors are included in the sample on each step
(Fig. 2(b)). The number of neighbors is sampled from a geometric distribution with
mean p/(1 − p), where p is set to 0.7 [7]. FFS matches well spectral properties [7],
while it underestimates the degree distribution and fails to match the path length and
clustering coefficient of the original networks [36]. However, FFS corresponds to a model
by which one author collects the papers to cite and include them in the bibliography [8].
The author starts with one paper, explores its bibliography and selects the papers to
cite. The procedure is recursively repeated in selected papers until desired collection of
citations is reached.

Last, we adopt expansion sampling [31] (EXS), where the seed node is again selected
uniformly at random, while the neighbors of the sampled nodes are included in the sample
with probability proportional to

1− β|N({v})−(N(S)∪S)|, (1)

where v is the concerned node, S the current sample and N(S) the neighborhood of
nodes in S (Fig. 2(c)). Expression |N({v}) − (N(S) ∪ S)| denotes the expansion factor
of node v for sample S and means the number of new neighbors contributed by v. The
parameter β is set to 0.9 [31]. Note that EXS ensures that the sample consists of nodes
from most communities in the original network and that the nodes that are grouped
together in the original network, are also grouped together in the sample [15]. EXS
imitates the modification of snowball sampling approach mentioned above, where for
example we want to gather the data about individuals from different countries. Thus, on
each step we include in the sample the individuals, which knows larger number of others
from various countries.

3. Group extraction

The node group structure of different networks is explored by a group extraction
framework [29, 39, 40] with a brief overview below.

Let the network be represented by an undirected graph G(V,L), where V is the set
of nodes and L the set of links. Next, let S be a group of nodes and T a subset of nodes
representing its corresponding linking pattern (i.e., the pattern of connections of nodes
from S to other nodes [25]), S, T ⊆ V . Denote s = |S| and t = |T |. The linking pattern T
is selected to maximize the number of links between S and T , and minimize the number
of links between S and TC , while disregarding the links with both endpoints in SC . For
details on the group objective function see [29, 41].

The above formalism comprises different types of groups commonly analyzed in the
literature (Fig. 3). It consider communities [15] (i.e., link-density community [14]), de-
fined as a (connected) group of nodes with more links toward the nodes in the group
than to the rest of the network [24]. Communities are characterized by S = T . Fur-
thermore, the formalism consider possibly disconnected groups of structurally equivalent
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(a) Community (b) Module

Figure 3: Toy examples of groups of nodes in networks, where groups S and their corresponding linking
patterns T are shown with highlighted and squared nodes, respectively (see text). (a) Communities
are densely connected groups of nodes with S = T . (b) Modules are possibly disconnected groups of
structurally equivalent nodes with S ∩ T = ∅. Groups spanning between communities and modules are
denoted mixtures.

nodes denoted modules [25, 27] (i.e., link-pattern community [14]), defined as a (possibly)
disconnected group of nodes with more links towards common neighbors than to the rest
of the network [24]. Modules have S ∩ T = ∅. Communities and modules represent two
extreme cases with all other groups being the mixtures of the two [29], S∩T ⊂ S and/or
S ∩ T ⊂ T . The reader may also find it interesting that the core-periphery structure is
a mixture with S ⊂ T , while the hub & spokes structure is a module with t = 1.

The type of group S can in fact be determined by the Jaccard index [42] of S and its
corresponding linking pattern T . The group parameter τ [29], τ ∈ [0, 1], is defined as

τ(S, T ) =
|S ∩ T |
|S ∪ T |

. (2)

Communities have τ = 1, while modules are indicated by τ = 0. Mixtures correspond
to groups with 0 < τ < 1. For the rest of the paper, we refer to groups with τ ≈ 1 as
community-like and groups with τ ≈ 0 as module-like.

Groups in networks are revealed by a sequential extraction procedure proposed in [39,
29, 40]. One first finds the group S and its linking pattern T with random-restart
hill climbing [43] that maximizes the objective function. Next, the revealed group S is
extracted from the network by removing the links between groups S and T , and any node
that becomes isolated. The procedure is then repeated on the remaining network until
the objective function is larger than the 99th percentile of the values obtained under the
same framework in a corresponding Erdős-Rényi random graph [44]. All groups reported
in the paper are thus statistically significant at 1% level. Note that the above procedure
allows for overlapping [45], hierarchical [46], nested and other classes of groups.

4. Analysis and discussion

Section 4.1 introduces real-world networks considered in the study. Section 4.2 reports
the node group structure of the original networks extracted with the framework described
in Section 3. The groups extracted from the sampled networks are analyzed in Section 4.3.
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Table 1: Social and information networks considered in the study.

Network Description # Nodes # Links

Collab High Energy Physics collaborations [8] 9877 25998
PGP Pretty Good Privacy web-of-trust [47] 10680 24340

P2P Gnutella peer-to-peer file sharing [8] 8717 31525
Citation High Energy Physics citations [8] 27770 352807

For a complete analysis, we also observe the node group structure of a large network with
more than a million links in Section 4.4.

4.1. Network data

The empirical analysis in the following sections was performed on four real-world
social and information networks. Their main characteristics are shown in Table 1.

The Collab [8] is a social network of scientific collaborations among researchers, who
submitted their papers to High Energy Physics – Theory category on the arXiv in the pe-
riod from January 1993 to April 2003. The nodes represent the authors, while undirected
links denote that two authors co-authored at least one paper together.

The PGP [47] is a social network, which corresponds to the interaction network of
users of the Pretty Good Privacy algorithm collected in July 2001. The nodes represent
users, while undirected links indicate relationships between those, who sign each other’s
public key.

The P2P [8] is an information network, which contains a sequence of snapshots of
the Gnutella peer-to-peer file sharing network collected in August 2002. The nodes
represent hosts in the Gnutella network, which are linked by undirected links if there
exist connections between them.

The Citation [8] is an information network, again gathered from the High Energy
Physics – Theory category from the arXiv in the period from January 1993 to April
2003 and includes the citations among all papers in the dataset. The network consists
of nodes, which represent papers, while links denote that one paper cite another.

4.2. Group structure of original networks

We first analyze the properties of groups extracted from the original networks sum-
marized in Table 2.

The number of groups differs among networks, still the mean group size s (denoted
〈s〉) is comparable across network types. Groups S in social networks consist of around 64
nodes, while 〈s〉 in information networks exceeds 150 nodes. The mean linking pattern
size t (denoted 〈t〉) of social networks is comparable to 〈s〉. The latter relation 〈t〉 ≈
〈s〉 is expected due to the pronounced community structure commonly found in social
networks [48]. On the other hand, 〈t〉 > 〈s〉 is expected for information networks, due to
the abundance of module-like groups.

The characteristic group structure of networks is reflected in the group parameter τ .
For social networks, its values are around 0.556, which indicates the presence of commu-
nities, modules and mixtures of these. In contrast to social networks, the information
networks have τ closer to 0 and consist mostly of module-like groups.
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Table 2: Groups of nodes extracted from social and information networks. We report the number of
groups #, the mean group size s, the mean pattern size t, the mean group parameter τ , the median
group parameter denoted mτ and the distribution over different types of groups (see text). Notice that
social networks consist of smaller groups with larger τ than information networks.

Network Group Community Mixture Module
# 〈s〉 〈t〉 〈τ〉 mτ Distribution %

Collab 129 66.9 67.2 0.568 0.554 1.6% 96.8% 1.6%
PGP 87 62.2 61.9 0.568 0.536 4.6% 94.3% 1.1%

P2P 70 154.8 177.0 0.057 0.000 0.0% 44.3% 55.7%
Citation 284 271.7 280.6 0.186 0.120 0.0% 96.8% 3.2%

To summarize, social networks represent people and interactions between them, like
a few authors writing a paper together, therefore we can expect a larger number of
community-like groups in these networks. On the other hand, in information networks
the homophily is less typical and thus the structure of these networks is rather described
by module-like groups.

4.3. Group structure of sampled networks

Sampling techniques outlined in Section 2 enable setting the size of the sampled net-
works in advance. We consider sample sizes of 15% of nodes from the original networks,
that provides for an accurate fit of several network properties [7, 35].

Table 3 and 4 present the properties of the node group structure of sampled social
and information networks, respectively. Notice that RLS and FFS show different per-
formance than other techniques. The samples obtained with RLS and FFS contain less
groups with no more than 36 nodes. Additionally, almost all groups in these samples are
modules, which reflects in the mean group parameter τ (denoted 〈τ〉) approaching 0 for
all networks.

To verify the above findings, we compute externally studentized residuals of the sam-
pled networks that measure the consistency of each sampling technique with the rest.
The residuals are calculated for each technique as the difference between the observed
value of considered property and its mean divided by the standard deviation. The mean
value and standard deviation are computed for all sampling techniques, excluding the
observed one (for details see [49]). Statistically significant inconsistencies between tech-
niques are revealed by two-tailed Student t−test [50] at P−value of 0.1, rejecting the null
hypothesis that the values of the considered property are consistent across the sampling
techniques.

Statistical comparison of sampling techniques for the number of groups and the mean
group parameter τ is shown on Fig. 4. We confirm that the samples obtained with RLS
and FFS reveal significantly less groups with significantly smaller 〈τ〉 than other sampling
techniques. Moreover, if we compare the number of links in the sampled networks, RLS
and FFS create samples that contain on average 3% of links from the original networks.
In contrast, the samples obtained with RND, RLI, BFS and EXS consist of around 16%
of links from the original networks. As mentioned before, the sizes of all samples are
15% of the original networks, thus the sampled networks obtained with RLS and FFS
are much sparser than others. In addition, the performance of RLS and FFS can also be
explained by their definition. Since in RLS we include only randomly selected links in
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Table 3: Groups of nodes extracted from sampled social networks over 100 realizations of different
sampling techniques (see text). We report the number of groups # and standard deviation, the mean
group size s, the mean pattern size t, the mean group parameter τ and standard deviation, the median
group parameter denoted mτ and the distribution over different types of groups. Notice that sampled
networks expectedly consist of smaller groups, but with larger τ than original social networks (see 〈τ〉
and mτ ).

Network Sampling Group Community Mixture Module
# 〈s〉 〈t〉 〈τ〉 mτ Distribution %

Collab

/ 129.0 66.9 67.2 0.568 0.554 1.6% 96.8% 1.6%

RND 65.4± 3.7 13.5 13.7 0.851± 0.030 0.989 54.7% 41.9% 3.4%
RLS 1.2± 0.5 1.5 4.8 0.047± 0.149 0.048 0.0% 8.3% 91.7%
RLI 74.7± 4.6 13.7 13.9 0.846± 0.030 0.979 52.7% 43.4% 3.9%
BFS 104.0± 6.5 18.2 18.5 0.787± 0.032 0.861 30.3% 66.5% 3.2%
FFS 4.0± 1.6 16.8 29.8 0.000± 0.000 0.000 0.0% 0.0% 100.0%
EXS 87.0± 5.8 18.4 18.9 0.741± 0.026 0.791 21.4% 76.3% 2.3%

PGP

/ 87.0 62.2 61.9 0.568 0.536 4.6% 94.3% 1.1%

RND 68.2± 4.5 15.8 16.0 0.891± 0.024 1.000 67.8% 28.7% 3.5%
RLS 2.8± 1.0 5.7 7.6 0.304± 0.233 0.263 21.4% 28.6% 50.0%
RLI 74.3± 4.3 15.8 16.1 0.883± 0.024 1.000 65.1% 31.1% 3.8%
BFS 95.4± 9.2 17.5 17.7 0.784± 0.025 0.909 39.2% 55.6% 5.2%
FFS 3.6± 1.3 13.5 32.6 0.000± 0.000 0.000 0.0% 0.0% 100.0%
EXS 80.9± 6.5 15.6 15.8 0.779± 0.028 0.873 34.5% 61.2% 4.3%

the sample, it commonly contains a large number of sparsely linked components, whose
structure is best described as module-like. On the other hand, the samples obtained with
FFS consist of one connected component with a low average degree of 2.33. Thus, the
sparsely connected nodes also form groups, which are more similar to modules. Due to
the above reasons, we exclude RLS and FFS from further analysis. We focus on RND,
RLI, BFS, and EXS, whose performance is clearly more comparable.

The selected sampling techniques perform similarly across all networks as shown in
Table 3 for social and Table 4 for information networks. The samples consist of various
number of groups, still in most cases less than the original networks. The mean sizes
s and t are around 40, in contrast to groups with 143 nodes on average in the original
networks. Still, 〈s〉 ≈ 〈t〉 irrespective of network type and the sampling technique, which
implies stronger characterization by community-like groups, as already argued in the case
of social networks in Section 4.2.

Indeed, the majority of groups found in sampled social networks are community-like,
which reflects in the parameter τ > 0.7. In sampled information networks the number of
mixtures decreases and communities appear, thus τ is larger than in the original networks.
Fig. 5 shows a clear difference in the distribution of τ between the original and sampled
networks. Furthermore, to confirm that differences exist between the structure of the
original and sampled networks, we compute externally studentized residuals, where we
include the value of considered property of the original network in computing the mean
over different sampling techniques. We compare the number of groups and the parameter
〈τ〉 for the original networks and their samples (Fig. 6). The results prove that the original
networks contain a significantly larger number of groups with significantly smaller 〈τ〉
than the sampled networks. Yet, larger parameter τ and consequently more community-
like groups in sampled social networks and less module-like groups in sampled information
networks indicate clear changes in the network structure introduced by sampling. We
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Table 4: Groups of nodes extracted from sampled information networks over 100 realizations of different
sampling techniques (see text). We report the number of groups # and standard deviation, the mean
group size s, the mean pattern size t, the mean group parameter τ and standard deviation, the median
group parameter denoted mτ and the distribution over different types of groups. Notice that sampled
networks expectedly consist of smaller groups, but with larger τ than original information networks (see
〈τ〉 and mτ ).

Network Sampling Group Community Mixture Module
# 〈s〉 〈t〉 〈τ〉 mτ Distribution %

P2P

/ 70.0 154.8 177.0 0.057 0.000 0.0% 44.3% 55.7%

RND 23.3± 3.9 24.2 24.4 0.163± 0.049 0.034 4.2% 45.8% 50.0%
RLS 1.6± 0.9 1.2 3.6 0.000± 0.008 0.000 0.0% 0.0% 100.0%
RLI 26.2± 4.4 27.5 28.1 0.161± 0.039 0.035 3.8% 48.8% 47.4%
BFS 34.1± 5.5 31.3 27.9 0.131± 0.042 0.034 2.3% 50.7% 47.0%
FFS 3.6± 1.4 17.8 28.3 0.000± 0.000 0.000 0.0% 0.0% 100.0%
EXS 34.0± 5.9 36.9 37.3 0.125± 0.030 0.035 2.4% 53.8% 43.8%

Citation

/ 284.0 271.7 280.6 0.186 0.120 0.0% 96.8% 3.2%

RND 121.4± 4.9 74.9 78.1 0.405± 0.016 0.329 0.2% 80.9% 18.9%
RLS 1.5± 1.2 1.4 15.3 0.014± 0.073 0.014 0.0% 0.0% 100.0%
RLI 124.8± 5.5 76.3 79.9 0.415± 0.014 0.344 0.2% 82.6% 17.2%
BFS 120.4± 7.1 99.2 100.9 0.359± 0.047 0.244 0.1% 77.5% 22.4%
FFS 10.6± 4.2 35.5 30.0 0.000± 0.000 0.000 0.0% 0.0% 100.0%
EXS 131.2± 6.0 91.4 95.4 0.388± 0.019 0.284 0.2% 82.0% 17.8%

(a) Number of groups # (b) Group parameter 〈τ〉

Figure 4: Statistical comparison of (a) number of groups and (b) mean group parameter τ for the
sampled networks obtained with different sampling techniques (see text). We show externally studentized
residuals that measure the consistency of each sampling technique with the rest and expose statistically
significant inconsistencies between the techniques with two-tailed Student t-test at P -value of 0.1 (shaded
regions correspond to 90% confidence intervals). Notice that sampled networks obtained with RLS and
FFS reveal less groups (see (a)) with significantly smaller parameter τ (see (b)) than other sampling
techniques.

conclude that these changes occur regardless of the network type or the adopted sampling
technique.

Notice that the largest τ and thus the strongest characterization by community-
like groups is revealed in the sampled networks obtained with both random selection
techniques, RND and RLI. In RND nodes with higher degrees are more likely to be
selected to the sample by the definition, while RLI is biased in a similar way [10]. Thus,
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(a) Collab network (b) PGP network

(c) P2P network (d) Citation network

Figure 5: Distributions of group parameter τ for the original networks and their sampled representatives
obtained with selected sampling techniques (see text). Histograms are derived by standard equidistant
binning, while the estimates of a beta distribution for the original (solid lines) and sampled networks
(dashed lines) are merely a guide for the eye. Notice that sampled networks are characterized by denser
groups with notably larger τ than the original ones. Groups are more community-like in the case of
social networks (see (a) and (b)), while less module-like in the case of information networks (see (c)
and (d)).

densely connected groups of nodes have a higher chance of being included in the sampled
network, while sparse parts of the networks remain unsampled. On the other hand, BFS
and EXS sample the broad neighborhood of a randomly selected seed node and thus the
sampled network represents a connected component. In the case of BFS, all nodes and
links of some particular part of the original network are sampled. The latter is believed
to be representative of the entire network [37], yet BFS is biased towards sampling
nodes with higher degree [51] and overestimates the clustering coefficient, especially
in information networks [1]. On the other hand, EXS ensures the smallest partition
distance among several other sampling techniques, which means that nodes grouped
together in communities of sampled network are also in the same community in the
original network [31]. Therefore, the stronger characterization by community-like groups
in sampled networks can also be explained by the definition and behavior of the sampling
techniques.
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(a) Number of groups # (b) Group parameter 〈τ〉

Figure 6: Statistical comparison of (a) number of groups and (b) mean group parameter τ for the original
networks and their sampled representatives obtained with selected sampling techniques (see text). We
show externally studentized residuals that measure the consistency of each network with the rest and
expose statistically significant inconsistencies between the networks with two-tailed Student t-test at
P -value of 0.1 (shaded regions correspond to 90% confidence intervals). Notice that original networks
reveal more groups (see (a)) with significantly smaller parameter τ (see (b)) than the sampled networks.

4.4. Group structure of a large network

Due to the relatively high time complexity of the node group extraction framework,
we consider only networks with a few thousand nodes. However, our previous study [35]
proved that the size of the original network does not affect the accuracy of the sam-
pling. Still, for a complete analysis, we also inspect the changes in node group structure
introduced by sampling of a large NotreDame network with more than a million links.
Due to the simplicity and execution time, we present the analysis for two sampling tech-
niques, RND from random selection and BFS from network exploration category. We
also limit the number of groups extracted from the networks to 100 (i.e., we consider top
100 significant groups with respect to the objective function).

The NotreDame data are collected from the web pages of the University of Notre
Dame – nd.edu domain in 1999. The network contains 325,729 nodes representing indi-
vidual web pages, while 1,497,134 links denote hyperlinks among them.

Table 5 shows the properties of groups, found in the original and sampled networks.
The samples consist of smaller groups, still the mean size s remains larger than the
mean size t. The majority of groups extracted from the original network are module-
like, which reflects in the parameter τ slightly larger than 0. On the other hand, the
changes introduced by sampling are clear, since the samples contain less modules, which
is revealed by a larger parameter τ . These findings are consistent with the results on
smaller networks from previous sections. The NotreDame as an information network
expectedly consists of densely linked groups similar to modules, while the structure of
sampled networks exhibits stronger characterization by community-like groups. That is
again irrespective of the adopted sampling technique.
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Table 5: Groups of nodes extracted from the original NotreDame network and its sampled representatives
over 100 realizations of selected sampling techniques (see text). We report the number of groups #, the
mean group size s, the mean pattern size t, the mean group parameter τ and standard deviation, the
median group parameter denoted mτ and the distribution over different types of groups. Notice that
sampled networks expectedly consist of smaller groups, but with larger τ than original network (see 〈τ〉
and mτ ).

Sampling Group Community Mixture Module
# 〈s〉 〈t〉 〈τ〉 mτ Distribution %

/ 100 876.8 403.6 0.030 0.028 0.0% 99.0% 1.0%

RND 100 302.5 271.7 0.369± 0.010 0.364 0.0% 100.0% 0.0%
BFS 100 411.6 251.7 0.135± 0.030 0.119 0.0% 99.5% 0.5%

5. Conclusion

In this paper, we study the presence of characteristic groups of nodes like communities
and modules in different social and information networks. We observe the groups of the
original networks and analyze the changes in the group structure introduced by the
network sampling.

The results first reveal noticeable differences in the group structure of original so-
cial and information networks. Nodes in social networks form smaller community-like
groups, while information networks are better characterized by larger modules. After
applying network sampling techniques, sampled networks expectedly contain fewer and
smaller groups. However, the sampled networks exhibit stronger characterization by
community-like groups than the original networks. We have shown that the changes in
the node group structure introduced by sampling occur regardless of the network type
and consistently across different sampling techniques. Since networks commonly con-
sidered in the literature are inevitably just a sampled representative of its real-world
analogue, some results, such as rich community structure found in these networks, may
be influenced by or are merely an artifact of sampling.

Our future work will mainly focus on larger real-world networks, including other
types of networks like biological and technological. Moreover, we will further analyze the
changes in the node group structure introduced by sampling and explore techniques that
could overcome observed deficiencies.
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